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The problem of propagation of small and finite perturbations in a continuous medium 
is associated with the traditional directions of classical hydrodynamics and nonlinear acous- 
tics. Starting with the well-known studies of Riemann [i], Korteveg and De Vries [2], and 
others, this area has acquired substantial mathematical justification. However, the kinetic 
solution of specific problems of nonlinear acoustics andthe theory of shock waves started 
substantially later, in the 1950s and 1960s of the present century. This was created, on 
one hand, by the appearance of sources of intense ultrasound, and, on the other, by the cre- 
ation of laboratory techniques of investigating shock waves. In this connection one must 
note the large contribution to the development of nonlinear acoustics by Khokhlov and col- 
laborators [3]. The method developed of slowly varying profiles [4, 5] is still at the pres- 
ent time one of the basic methods of investigating nonlinear interactions. 

Recently the theory of nonlinear hydrodynamic perturbations has obtained new momentum. 
The use of large volumes of an active medium in gas lasers and the clear understanding of 
the nonequilibrium character of processes occurring in the upper atmospheric layers of earth 
and other planets generated the necessity of studying the propagation of hydrodynamic per- 
turbations in nonequilibrium media with an excess reserve of internal energy. Along with 
the well-known dissipative and nonlinear effects in these media there appears a new factor, 
related to energy transfer from enriched internal degrees of freedom to hydrodynamic modes. 
Thus, the nonequilibrium medium can emerge as an amplifier of hydrodynamic perturbations. 
The amplifying properties of the nonequilibrium nonlinear medium change the nature of wave 
propagation of small and finite amplitudes: sound amplification is possible, stationary 
disruptions are generated and a detonation regime occurs. The purpose of the present review 
is also the discussion of recent achievements in this new region of hydrodynamics of a non- 
equilibrium gas. 

i. Sound propagation in a Vibrationally Nonequilibrium Gas. Sound propagation in a 
nonequilibrium gas was investigated theoretically in [6-14]. To explain the basic features 
of sound propagation in this medium consider the simplest case of one-dimensional propaga- 
tion of a planar sound wave in a gas which is stationary, but whose nonequilibrium state 
undergoes pumping and heat exchange. The system of equations describing propagation of 
hydrodynamic perturbations in this gas consists of hydrodynamic and relaxation equations. 
In the simplest case one can neglect the effect of viscosity and thermal conductivity on 
sound absorption and consider the following model mechanism of creating a nonequilibrium 
stationary state [9]. The gas under investigation undergoes action of energy pumping in 
vibrational degrees of freedom of power I and effective heat transfer from the translation- 
al degrees of freedom of power Q (I and Q refer to unit mass). The effect of walls on sound 
wave propagation is neglected. 

The equations of continuity, motion, and energy are in this case 

O_p__p + div (gv) = O, (1)  
Ot 

dv 
P -- VP, (2)  

dt 

dh 1 dp _ I _ Q ,  (3)  
dt P dt 

where h = Xp/((7 - i)9) + ~; 7 = (c + l)/c. 
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The relaxation equation for the vibrational energy is written in the form 

d8 __ ~:~q--S -~,-1. (4 )  
dt "~ 

Further analysis is conducted in a standard manner. The full system of hydrodynamic equa- 
tions, including the relaxation equation and the equation of state, describes any motion of 
the medium. Sound oscillations are small perturbations, and can be described by linear 
equations, obtained if in Eqs. (1)-(4) and the equation of state one substitutes a solution 
in the form 

a + a '  exp (ikx - -  i~t), (5) 

where a ~ p, p, T, v, E; a is a parameter of the unperturbed medium, and a' is a perturba- 
tion which is assumed to be small. Substituting (5) in the full system of hydrodynamic 
equations makes it possible to obtain a dispersion relation, relating the frequency ~ and 
the wave vector k. The complex wave vector value found from this relation k(m) = Rek + 
i Imk corresponds to sound absorption if Imk > 0, and sound amplification if Imk < 0. These 
two regions are separated by the limiting frequency value mcr, obtained from the condition 
Imk = 0. In the simplest case for pumping and heat transfer one can use the expressions 
I = I(s), Q = kB~(T -- T*)/(Rp), where T is the gas temperature, T* is the wall temperature, 
R = V/S, V is the volume of the system, S is the area of the surface, through which heat 
transfer takes place [9]. In this case the frequency for which the absorption coefficient 
vanishes is determined by the equality 

02 _ 2 • - ~  T ( 6 )  
cr ,2 Rp l ( 2c__ T O ln ~ ) ' 

OT 

i f  2c - T(3 i n ~ / S T )  >> 1. The r e s u l t  ( 6 ) ,  t h o u g h  o b t a i n e d  f o r  a s p e c i a l  model  o f  pumping 
and heat transfer, is quite general. The critical frequency for a strong temperature depen- 
dence of the relaxation time can always decrease with increasing pumpingintensity and relaxa- 
tion time, and increases with increasing effectiveness of heat exchange, i.e., is determined 
by the reverse of vibrational (internal) energy and the rate of its transition into transla- 
tional degrees of freedom. 

The condition of sound amplification, obtained in [9], is 

2c -- T 0 In T ) lxm • 
OT / kB 7' RP 

2c (c + 1) 

C o 

> 0 ,  (7) 

allowing simple physical interpretation. Sound amplification is possible if following a 
period of the sound wave the energy flow from the outside following pumping and the transi- 

0 1 n ~  
tion from internal degrees of freedom, proportional to ( 2 c - - T  

l~m 
OT ! k--~-' exceeds losses 

due to heat exchange with the walls and relaxation processes, proportional to KmT/(Rp) + C v. 

Condition (7) for fixed pumping I is better satisfied for molecules with large vibra- 
tional quanta and a strong temperature dependence of vibrational relaxation times, since 
in this case 81n~/ST is large. For CO with p = 104 Pa, T = 500 K, T* = 300 K, T v = 700 K 
the imaginary part of k is Imk = 1 m -l. For comparison we mention that the amplification 
coefficient of IR-radiation in a CO-laser is of the order of 10 -I m -I In the example con- 
sidered the sound amplification coefficient exceeds the absorption coefficient (in the ab- 
sence of pumping) by approximately i0 times. 

The existence of a critical frequency (6) leads to filtration of sound oscillations. 
For sound "running" through a nonequilibrium medium only those oscillations "survive" and 
are amplified, having a frequency higher than mcr" We stress that low-frequency sound 
propagates quasistatically, since for ~ + 0 (mT << i, m << Km/(Rp); Im/(kBT)) a quasista- 
tionary state can be established. 

We note that among the Studies [6-14], devoted to sound amplification, the most common 
case was considered in [9], accounting for the action of pumping and heat exchange. 
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At present time there exist no direct experiments on sound amplification measurement; 
there exist, however, experimental results on sound propagation in a gas with the chemical 
reaction H 2 + C12 = 2HCI [15-17]. A substantial result of these experiments is a noticeable 
difference between sound absorption in a gas without reactions and in the process of reac- 
tions. The decrease in the sound absorption coefficient during the reaction process can be 
interpreted as appearance of amplification, generated by a source of a heated gas, emerging 
from an exothermic reaction. At the same time the amplification mechanism is determined by 
the temperature dependence of the reaction rate. The agreement between theory andexperiment 
in the region of low reaction rates is quite good. For high rates the divergence reaches 
factors of two. The experiments in [15-17] were conducted in buffered Ar and SF 6 gases. 
To explain the experiment in the latter case it is necessary to account, besides the vibra- 
tional-translational energy exchange, for exchange of vibrational energies between HCI and 
SF 6 molecules, which at the present time has not been thoroughly investigated. It must be 
noted that in interpreting the results of [17], as well as in the numerical simulations 
[18, 19], the strong vibrational excitation of the HCI molecule has not been included at 
all [19, 20]. Account of this fact, as well as of the wider frequency spectrum in experi- 
ments, allows to account more completely for the acousto-kinetic interaction. 

2 Description of Vibrational Nonequilibrium in Terms of Second ViScosity. Dissipa- 
tive effects in a vibrationally nonequilibrium gas, explained by the retarded energy exchange 
between the translational and vibrational degrees of freedom, can be described under certain 
conditions in terms of the second viscosity. 

Consider initially the propagation of perturbations in a primarily equilibrium gas. 
The original system of equations, similarly to (i)-(4), are conveniently written as follows: 

dv 
O__pp + div (pv) = O; p = -- grad p; 
Ot dt ( 8 )  

ds= (1 1 ) a~ ds_seq--8 
P dt T T~ dt dt 

U n l i k e  Eqs .  ( 1 ) - ( 4 ) ,  an e n t r o p y  e q u a t i o n  h a s  been  s e l e c t e d  in  (8)  a l o n g  w i t h  t h e  e n e r g y  
e q u a t i o n .  Thus ,  as  i n d e p e n d e n t  v a r i a b l e s  in  (8 )  we u s e  p, v ,  e ,  and s .  The v i b r a t i o n a l  
e n e r g y  p l a y s  t h e  r o l e  o f  t h e  n o n e q u i l i b r i u m  p a r a m e t e r .  Under  e q u i l i b r i u m  c o n d i t i o n s  e = 
Eeq(P,  s )  and t h e  l a s t  two r e l a t i o n s  in  (8 )  a r e  e q u a t e d  t o  z e r o .  

The second viscosity, as shown in [21], appears only in a special class of solutions 
of the equations of relaxational hydrodynamics(8). These solutions are characterized by 
the fact that the relatively fast relaxation process is assumed completed in the zeroth 
approximation, and local equilibrium at each moment of time is completely determined by 
the fields of hydrodynamic quantities at the same moment of time. Accordingly, the follow- 
ing expansion s for g and p are utilized: 

e = e ( ~  p, ST V) + ~e(1)(r, P, s, v ) +  .... ( 9 )  

( Op ) e(1) (i0) p(p, s, 8) = pr (p, s) + ~ ~ ~,~,~<o) 

with similar expressions for the derivatives of hydrodynamic quantities. Here ~ = cs~/L. 
Following the determination of e (I) from the linearized system (8), we obtain an equation 
of motion in the required form with the second viscosity: 

pdv/dt = - - g r a d p ( ~  (ii) 

where 

Op 08 (0) 
: -- �9 ~ v (i2) 

08 8p 

o r  s = Tp(c~  2 - c 0 a ) .  He re  c o and c~ a r e  t h e  p r o p a g a t i o n  r a t e s  o f  l o w - f r e q u e n c y  and h i g h -  
f r e q u e n c y  sound .  

The t r a n s i t i o n  in  t h e  e q u a t i o n s  o f  r e l a x a t i o n  gas  dynamics  t o  t h e  d e s c r i p t i o n  in  t e r m s  
o f  t h e  s econd  v i s c o s i t y  i m p l i e s  c o n t r a c t i o n  in  t h e  method o f  d e s c r i p t i o n ;  i n s t e a d  o f  t h e  f o u r  
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variables p,  s, v, and ~ there occur three - p,  s, and v. The abbreviated description is 
reached with the purpose of coarsening the time scale. Processes occurring during times of 
the order of relaxation times are not considered; only their result, leading to expansion 
(9), is important. 

Sound amplification in nonequilibrium media (a negative absorption coefficient) made it 
possible to suggest the existence of a negative second viscosity coefficient in a vibration- 
ally nonequilibrium gas [12]. Ona qualitative level the consideration is the following. 
The absorption coefficient in the case of a plane wave exp (imt~ ikx) is determined by the 
quantity Imk. The same plane wave in a medium with bulk viscosity decays by the law exp 
(-~x), where y = ~25/(2pcs3). Equating the last two expressions, we obtain $ = -2pcs 31mk/m 2 
or $ = -p Im (m2/k2)/~ 

A rigorous derivation of the expression for the second viscosity coefficient in a pri- 
marily nonequilibrium medium, not restricted by the acoustic approximation, and based on 
the general idea of abbreviating the method of description, as discussed earlier, is given 
in [22]. We note the basic features of the derivation of the secondviscosity coefficient 
in a primarily nonequilibrium gas. The equation for the entropy variation in a nonequili- 
brium gas with pumping and heat transfer is 

ds ( 1 ~ J %q--~ ~ I Q (13) 
dt Tv $ T 1 F 

whence i t  i s  seen  t h a t  t h e  e n t r o p y  v a r i a t i o n  may be o f  z e r o t h  o r d e r  o f  s m a l l n e s s  in  p due 
t o  t h e  t e rm I /T1  - Q/T. Thus,  t h e  a d v a n t a g e  o f  e n t r o p y  as one o f  t h e  i n d e p e n d e n t  v a r i a b l e s  
v a n i s h e s ,  s i n c e  t h e  e n t r o p y  i s  no l o n g e r  c o n s t a n t  w i t h  an a c c u r a c y  w i t h i n  second  o r d e r  t e r m s .  
Along w i t h  p, s a n o t h e r  p o s s i b l e  c h o i c e  o f  i n d e p e n d e n t  v a r i a b l e s  can be P, E, where E i s  t he  
t o t a l  e n e r g y  o f  a u n i t  mass .  I n  a p r i m a r i l y  e q u i l i b r i u m  gas  t h e  r e p l a c e m e n t  o f  p, s by p, 
E does  n o t  change  a n y t h i n g ,  s i n c e  f o r  E = c o n s t  t h e  e n t r o p y  i s  c o n s t a n t  w i t h i n  second  o r d e r  
t e r m s .  I n  a n o n e q u i l i b r i u m  gas  t h e  c o n s t a n c y  of  E does  n o t  g u a r a n t e e  s = c o n s t .  T h e r e f o r e ,  
t h e  E ( ~  s)  and r  E) v a l u e s ,  b e i n g  t h e  v a n i s h i n g  a p p r o x i m a t i o n  in  e x p a n s i o n  ( 9 ) ,  
a r e  e q u a l ,  and c o n s e q u e n t l y ,  t h e  e x p r e s s i o n s  f o r  t h e  second  v i s c o s i t y  c o e f f i c i e n t  a r e  a l s o  
d i f f e r e n t .  Thus,  t h e  c h o i c e s  o f  v a r i a b l e s  P, s and p, E in  a n o n e q u i l i b r i u m  gas  a r e  non-  
e q u i v a l e n t ,  s i n c e  t h e y  c o r r e s p o n d  t o  d i f f e r e n t  p a r t i t i o n s  o f  e.  

The d e r i v a t i o n  o f  e x p r e s s i o n s  f o r  t h e  second  v i s c o s i t y  c o e f f i c i e n t ,  c a r r i e d  ou t  in  [12] 
on t h e  b a s i s  o f  ha rmon ic  a n a l y s i s ,  u s e s  as  i n d e p e n d e n t  v a r i a b l e s  p and E. The n o n e q u i l i b r i u m  
s y s t e m  w i t h  pumping and h e a t  t r a n s f e r  i s  c h a r a c t e r i z e d ,  a l o n g  w i t h  t h e  r e l a x a t i o n  t ime  ~, by 
t h e  e f f e c t i v e  pumping and h e a t  t r a n s f e r  t i m e s ,  t h e  s h o r t e r  o f  which  we d e n o t e  by ~sou- In 
s a t i s f y i n g  t h e  c o n d i t i o n s  ~ << 1 and ~ s o u  >> 1 t h e  i n t e n s i t y  o f  s o u r c e s  ( h e a t  t r a n s f e r  and 
pumping) can be assumed c o n s t a n t .  I n  t h i s  c a s e  t h e  scheme s u g g e s t e d  f o r  c a l c u l a t i n g  t h e  
second  v i s c o s i t y  c o e f f i c i e n t  i s  c o n s e r v e d .  I n s t e a d  o f  t h e  e n t r o p y  e q u a t i o n  i t  i s  o n l y  n e c e s -  
s a r y  t o  use  t h e  e q u a t i o n  f o r  t h e  t o t a l  e n e r g y .  The f o l l o w i n g  e x p r e s s i o n  i s  o b t a i n e d  f o r  t h e  
second viscosity coefficient: 

_ kB9~ p(O) (C~ + cI~)/9 ~ -  c l~ (14) 

m (co + c --- c~E1)2 ' 

where  ~E and ~p a r e  t h e  d e r i v a t i v e s  o f  �9 w i t h  r e s p e c t  t o  E and p. 

The s i t u a t i o n  changes  f o r  �9 ~ T s o u .  In  t h i s  c a s e ,  f o l l o w i n g  t ime  z n o t  o n l y  t h e  f a s t  
r e l a x a t i o n  p r o c e s s  i s  c o n c l u d e d  in  t h e  z e r o t h  a p p r o x i m a t i o n ,  bu t  a l s o  t h e  f a s t  p r o c e s s  o f  
s o u r c e  s y n c h r o n i z a t i o n  w i t h  i n s t a n t a n e o u s  hyd rodynamic  f i e l d s .  Th i s  l e a d s ,  in  t u r n ,  t o  a 
change  in  t h e  p r e s s u r e  e x p r e s s i o n ,  a c q u i r i n g  t h e  form 

Op E(~) Op ~(1) + ~ + .... (15)  p = p~O) (o) + ~ O~ OE 

where ,  b e s i d e s  e = ~(o)  + p r  + . . . .  t h e  e x p a n s i o n  E = E ( ~  + pE (1)  + . . .  i s  s a t i s f i e d .  
The corresponding second viscosity coefficient has a quite awkward form. 

We note two substantial differences in the second viscosity properties of primarily 
equilibrium and nonequilibrium gases. 

Firstly, in deriving the second viscosity coefficient we have further abbreviation of 
the method of description. Along with the relaxation process, the source synchronization 
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process with hydrodynamic fields is not considered either. In the first case (~sou >> i) 
this process is assumed frozen, and in the second case (~Tsou << i) it is very fast, and only 
its result is accounted for. 

Secondly, the second viscosity coefficient, as well as the absorption coefficient, 
loses its primary meaning as a characteristic of the medium, since it starts depending on 
the characteristics of heat exchange and pumping. 

The second viscosity coefficient, as well as the absorption coefficient, can acquire 
negative values [see Eq. (14)]. This fact does not contrdict the second law of thermo- 
dynamics, according to which the entropy production o is always positive or equal to zero. 
Indeed, in the case considered 

= ( l l T v -  1/T)  (eeq-  e)/% (16)  

and i t  i s  l a r g e r  t h a n  o r  e q u a l  t o  z e r o  i n d e p e n d e n t l y  o f  t h e  s i g n  o f  g.  I n  Eq. ( 16 )  one can  
isolate the term related to ~: 

o = G o + ~ div v. (17 )  

Unlike ordinary thermodynamics, where o = g(divv) 2, the negative ~ value does not change the 
sign of o [in Eq. (17)], since the additional term in the entropy production, proportional 
to $ divv, is small in comparison with the entropy production under unperturbed stationary 
conditions o0. 

3. Nonlinear Hydrodynamic Waves in Vibrationally Nonequilibrium Gas. The propagation 
of sound oscillations in a vibrationally nonequilibrium gas, can, as shown in Sec. i, be 
accompanied by amplification. With the flow of time the amplitude of these waves reaches 
a finite value, and the further evolution of oscillations must already be described by a 
system of nonlinear equations. 

The nonlinear equations of motion (the Euler equations) without assuming smallness of 
oscillations were first integrated by Riemann in 1860 [i]. Riemann started from the equa- 
tions of hydrodynamics in the one-dimensional case [see the first two equations of system 
(8)], augmented by the equation of state p = p(p). The Riemann method consists of the fact 
that by interchanging dependent and independent variables the nonlinear hydrodynamic equa- 
tions become linear. This can be done in the one-dimensional case. The method of integrat- 
ing the linear differential equation obtained, suggested by Riemann, became the prototype 
for solving the general problem of integrating second order linear equations in partial 
derivatives of hyperbolic type. 

The Riemann solution for the adiabatic equation of state p = p0(p/p0)7 is (for a wave 
traveling to the right) 

< v = ~  t - - x ~  c s 2 v . (18)  

Here the sound velocity is c S = /~p/80 = (cS)0 + (7 - l)v12, and the shape of the function 
r is determined by the condition v = r at x = 0. Expression (18) shows that relative to 
a fixed coordinate system the perturbation of the medium, corresponding to a fixed value of 
the velocity v, moves with velocity 

u = (%)0+ v + l  - - v ,  (19)  
2 

i.e., the displacement rate of different points of the profile is different. Both positive 
and negative v values arepossible for a harmonic excitation (r is a sinusoidal function). 
The case v > 0 corresponds to the region of compression, and v < 0 corresponds to dilatation. 
it is seen from expression (19) that the compression region moves with velocities v > c S, 
while the dilatation region moves with velocities v < c S. Thus, the original wave profile 
gets deformed with the propagation. The wave front becomes steeper until the condensation 
wave turns into a shock wave. Further treatment stops being valid, because neither viscosity 
nor thermal conductivity, whose role increases with gradients (front steepness), a~eaccount- 
ed for. 
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In the Riemann solution, as we saw, the nonlinearity is not assumed to be small. How- 
ever, from the physical point of view the statement of the problem according to Riemann is 
restricted by the validity region of the equation of state p = p(p). An adiabatic equation 
of state describes isoentropic processes, while the real entropy variation for acoustic 
waves is of third order of smallness (in the Mach number M S = v/cs, being for nonlinear 
sound waves M S ~ 10-2-10-4). Thus, the Riemann solution describes correctly the behavior 
of an intense sound wave within the second approximation [23-25]. 

A simultaneous account of nonlinear and dissipative effects can be carried out by means 
of the Burgers equation [23-25]. However, it is not accurate, since it cannot be obtained 
from the equations of hydrodynamics of a viscous fluid without further simplifications. 
It also describes quite well nonlinear waves in media with dissipation, since it includes 
all basic terms of second order of smallness. 

Denoting by primes deviations of hydrodynamic quantities from their stationary values, 
the Burger's equation for p' is 

ap' bp' ap__~' _ g  a~p ' _ O. ( 2 0 )  
ax ao ao 2 

- 1 1 /(2c~ and the Here @ = t - x/cs, the dissipative coefficient is ~ : ~-~-x. cm cpm 

nonlinear parameter is b = (7 + I)/(2cs3P). The equation for v has also the same shape, 
since for simple waves p = p(v), p = p(v). 

The Burgers equation for small nonlinearity transforms to the well-known linear equa- 
tion for media with dissipation, and in the absence of dissipation - to the Riemann equation 
for simple waves [23-25]. 

The quantitative pattern of evolution of a sound wave of finite amplitude, described 
by the Burgers equation, looks as follows. At the first phase of the wave propagation pro- 
cess there occurs distortion of the profile shape, consisting of formation of a sawtooth 
signal. At the second phase the front shape is stabilized. An "equilibrium" starts in the 
competition of nonlinear and dissipative effects. However, the oscillating signal value 
decreases, since the action of dissipative effects is not compensated. At the third phase 
the wave amplitude no longer depends on its input value. The wave again becomes harmonic, 
and decays by the laws of linear acoustics. The solution of the Burgers equation, describ- 
ing the evolution of an initial harmonic perturbation, was obtained by Khokhlov [25]. 

During the propagation of nonlinear hydrodynamic gases with excess values of vibration- 
al energies there appears a new factor - energy exchange between vibrational degrees of free- 
dom and hydrodynamic motion. Further energetic "maintenance" of the wave process can lead 
to two new effects. Firstly, the process of wave reversal is accelerated. Wave amplifica- 
tion in a vibrationally nonequilibrium gas enhances the role of the nonlinear factor, and 
the nonlinear effects appear earlier. Secondly, energy pumping starts competing with dissi- 
pative processes. This can lead to the fact that following wave reversal a stationary 
regime is formed, for which dissipative losses are totally compensated by energy influx from 
internal degrees of freedom. 

The quantitative description of the evolution of nonlinear hydrodynamic perturbations 
in a vibrationally nonequilibrium gas was given in [26, 27]. The starting point is the gen- 
eralized Burgers equation (for p >> i): 

a~p , 
ap' bp 'ap' - - ~ - - - - ~ p ' =  O, (21) 
8x aO O0 ~ 

which differs from (20) by the term ~p', taking into account wave amplification due to ener- 
gy exchange between internal degrees of freedom and hydrodynamic modes. In Eq. (21) 

[7" co b I 0r 1 oQ ]/[2(c+ 
P = - - P C s  p c ~- I �9 ap �9 ~p j 

The generalized Burgers equation (21) is obtained from the equations of continuity and mo- 
tion, supplemented by the relaxation and entropy equations (2) and (13) within the approxi- 
mation mm >> 1 accurately up to second order terms (inclusively) in small hydrodynamic per- 
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turbations. In the frequency region m~ >> i, where the generalized Burgers equation (21) is 
valid, the dissipative (viscous), nonlinear, and relaxation effects are differently mani- 
fested. The ratio of the viscous term a(82p'/a82) to the relaxation term 6P' in (21) is of 
the order of m2~,. Thus, at frequencies 

1 << o~ << 1 ( 2 2 )  
T (-v~,)'/2 

t h e  r e l a x a t i o n  e f f e c t s  a r e  p r e d o m i n a n t  o v e r  t h e  v i s c o u s  t e r m s ,  s i n c e  in  (21)  one can  n e g l e c t  
the third term, describing Stokes (viscous) absorption. The quasilinear equation obtained 
in this case is relatively simple to analyze [26]. If a perturbation propagates in the me- 
dium, whose profile at x = 0 is 

then [281 

p'(O, O)=/~ (0), (23)  

p '  = exp (~x) [ (z), O- -  z = b[(z) (1 " e x p  (~x))/~. (24)  

The solution (24) describes wave amplification (damping) and the distortion of its profile. 
The latter is easily verified by considering the case 6x << i. In this approximation 

/ (x, o) = f ( O - - x ( l l % - - @ ' ) )  

and relative to an inunobile medium the fixed p' value will propagate with velocity cS* = (i/ 
c S - bp') -I, which is larger the larger p' is. The distance at which wave reversal occurs 
and a discontinuity is formed, determined by the condition dp'/dx = m, equals 

lv = In [i + ~/(bf)lfg. (25)  

It follows from (25) that a discontinuity is formed only for 6/(bf') > - i. For positive 
6, corresponding to an excess vibrational energy in a nonequilibrium gas, this condition is 
always satisfied. For 6 < 0 a discontinuity is formed only when the profile is quite steep 
f' <-~/b. 

A distortion of the wave profile in the propagation process changes the harmonic con- 
tent of the perturbation. If f(z) = P0' sin (mz), the solution of (24) acquires the form 

2J~(nA) si~(n~O) A - -  ( 7 + l ) ~ P ~  exp(~x)--1 (26)  p ' =  p~ exp (gx) 
nA ' 2VCsP 

n = |  

It is seen from (26) that, along with uniformly increasing amplitudes of all harmonics, 
proportional to exp (6x), we have acceleration of energy pumping from the first harmonic 
to the higher ones, since (exp (6x) - 1)/6 > x and the discontinuity is formed faster. With 
increasing amplitudes of higher harmonics Stokes absorption starts playing a substantial 
role, therefore in the region of wave reversal it is necessary to include the discarded vis- 
cous term. Equation (21) can be solved in general form by using the Hopf-Cole replacement 

p '=  2~ Oln~/b. To sum up, we obtain 
00 

Oqo 02qo 
Ox ~r 00--- ~ -  (27)  

In the stationary case~0(8, x) = ~0(8), and Eq. (27) is easily integrated: 

00 = + (C - -  C exp (--29) - -  9) , 

where  y = i n  ~, and t h e  C v a l u e  i s  d e t e r m i n e d  by i n i t i a l  and b o u n d a r y  c o n d i t i o n s .  

The p r e s s u r e  p r o f i l e  i n  t h e  s t a t i o n a r y  r e g i m e  i s  d e t e r m i n e d  by ( 2 8 ) .  
responding to small 8: 

p , _  2= 09 _ _ _ [ 5 ( 1 _ 2 C )  0/b. 
b O0 

(28) 

For small y, cor- 

(29) 
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Fig. i. Temperature distribution in a shock wave. Region 
I is the unperturbed gas, region II is the relaxation zone, 
1 is a shock wave (viscous condensation discontinuity), and 
the wave moves from right to left. 

Fig. 2. Hugoniot adiabat. Curves I and II differ by the 

value of Y (YI >NII)" 

Near Y0 = in (2C)/2, corresponding to the extremum of ~y/Se: 

p' =2 (c .1 (2c)2 ) (30) 
where y(e*) = Y0. Finally, for y ~ Y2, where e ~ T/2 (T is the perturbation period): 

p' = (1 - -  2C exp ( - -  2y~)) T 

The s o l u t i o n s  ( 2 9 ) - ( 3 1 )  show t h a t  a p r i m a r y  s i n u s o i d a l  s i g n a l ,  p r o p a g a t i n g  in  a v i b r a t i o n a l -  
l y  e x c i t e d  g a s ,  a c q u i r e s  w i t h  t h e  f l o w  o f  t i m e  a s a w t o o t h  s h a p e ,  and l a t e r  e v o l v e s  w i t h o u t  
change  o f  s h a p e .  We s t r e s s  t h a t  t h e  d i s c u s s i o n s  p r o v i d e d  do n o t  t a k e  i n t o  a c c o u n t  t h e  v a r i a -  
t i o n  in  t h e  t e m p e r a t u r e  r e g i m e  o f  t h e  medium, and d e s c r i b e  t h e  f o r m a t i o n  o f  d i s c o n t i n u i t i e s  
moving w i t h  a Mach number  o f  t h e  o r d e r  o f  u n i t y .  

F i n a l l y ,  f o r  v e r y  h i g h  f r e q u e n c i e s ,  when m2~T, >> 1, r e l a x a t i o n  p r o c e s s e s  a r e  f r o z e n  
and can  be n e g l e c t e d  in  c o m p a r i s o n  w i t h  S t o k e s  a b s o r p t i o n .  I n  t h i s  c a s e  t h e  p r o p a g a t i o n  p r o -  
c e s s  i s  d e s c r i b e d  w i t h  good a c c u r a c y  by t h e  o r d i n a r y  B u r g e r s  e q u a t i o n  ( 2 0 ) .  

The p r o b l e m  o f  g e n e r a t i o n  o f  shock  d i s c o n t i n u i t i e s  in  a n o n e q u i l i b r i u m  gas  s t a r t s  a t -  
t r a c t i n g  a t t e n t i o n  in  r e c e n t  y e a r s .  Along w i t h  [26,  27 ] ,  t h e  s t u d i e s  [29,  30] a r e  d e v o t e d  
t o  t h i s  p r o b l e m ,  where  t h e  t r a n s f o r m a t i o n  o f  a weak d i s c o n t i n u i t y  i n t o  a shock  wave has  been  
investigated. At the same time we noted that at the present time there exist no direct ex- 
perimental studies of propagation of hydrodynamic perturbations in a nonequilibrium vibra- 
tionally excited gas, though the technique of obtaining large volumes of a nonequilibrium 
gas is well developed. 

4. Shock Waves in a NonequilibriumVibrationally Excited Gas. The propagation of shock 
waves in diatomic or polyatomic gases is accompanied by gas'heating. The heating process has 
a two-step character (at least for shock waves, at whose fronts there are no chemical reac- 
tions and ionization) [31]. Initially a temperature enhancement of translational and rota- 
tional degrees of freedom is observed at the front of the shock wave in the viscous conden- 
sation discontinuity. The width of the viscous condensation discontinuity for quite strong 
shock waves is of the order of the mean free path. Later, in a quite extended relaxation 
zone we have excitation of vibrational degrees of freedom. The temperature of vibrational 
degrees of freedom increases, while the translational temperature drops. All temperatures 
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Fig. 3. Temperature distribution in a shock wave, propaga- 
ting in a nonequilibrium gas. Region I is an unperturbed 
nonequilibrium gas, region II is the relaxation zone, and 
the wave moves from right to left. 

Fig. 4. Hugoniot adiabat for a shock wave in a nonequili- 
brium gas. 

are equalized at the edge of the relaxation zone. The length of the relaxation zone is of 
the order of v~. This process is shown schematically in Fig. i. The parameter distribution 
at the front of the shock wave is conveniently analyzed on a pV-diagram. The thermodyanmic 
parameters on both sides of the shock discontinuity are related by the conservation laws of 
fluxes of mass, momentum, and energy. For one-dimensional flow in a coordinate system at- 
tached to the front of the shock wave the conservation laws can be written in the form [31]: 

v~ v~ --_h2q- (32)  
p~v~ = p~v,; p~ + p~v~ -- p, + p~vg, h~ + ~ -  5 

By the  s u b s c r i p t  1 we d e n o t e  p a r a m e t e r s  o f  t h e  gas  in  t h e  r e g i o n  up t o  t h e  shock  w a v e ,  and 
by t h e  s u b s c r i p t  2 - f o l l o w i n g  t h e  shock  wave. From r e l a t i o n s  (32)  one can e s t a b l i s h  a r e -  
l a t i o n  between Pl, VI = I/Pl and P2, V2 = 1/02. It is of the form 

h~ ~ ha + (V~ -~ V2) (P2 - -  p~)/2 = O. (33)  

Here h I = h(pl, Vl), and h 2 = h(p2, V2)' Similarly to the Poisson adiabat p = p(V, s) re- 
lation (33) is called the Hugoniot shock adiabat. For an ideal gas 

therefore (33) acquires the form 

h = %mT = ? pV, 
y - - 1  

P__3_~ = (~ + 1) v ,  - -  ( ~ - -  1) v ,  

p~ (~; + 1) G - -  ('r l) V~ (34)  

Fixing the initial state of the gas Pl, VI, the shock adiabat (34) determines a set of pos- 
sible finite states of the gas (see Fig. 2). The specific choice of P2, V2 depends on the 
shock wave velocity v~. It follows from (32) that 

vg = v~, ( p , -  pO/ (v ,  - w,). (35) 

Graphically this velocity is determined by the slope o~ the line AB, drawn from the initial 
state into the final one (the ratio (P2 - Pl)/(Vl -- V2) is equal to the tangent of the in- 
clination angle of the line). Thus, given the initial conditions Pl, Vl and the velocity of 
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the shock wave (the slope of the line AB), one can find the final state Pz, V2" The posi- 
tion of the Hugoniot adiabat on the pV plane depends on the quantity y. The 7 value is dif- 
ferent at the origin of the relaxation zone and at its end. At the origin of the relaxation 
zone the vibrational degrees of freedom can be assumed to be "frozen," since �9 >> T,. There = 
fore, at the origin of the zone for diatomic molecules 71 = Cpm/Cvm = 7/5. At the end of 
the relaxation zone starts the state of total thermodynamic equilibrium, and for diatomic 
molecules at sufficiently high temperatures 72 = 9/7. Thus, two Hugoniot adiabats are, gen- 
erally speaking, possible from the point Pl, VI. One of them (I) corresponds to excitation 
of quickly relaxing degrees of freedom (translational and rotational), and describes the 
gas state at the origin of the relaxation zone. The second (II) determines the gas parame- 
ters at the end of the relaxation zone, i.e., in the region of achieving total statistical 
equilibrium. The adiabat I appears to be steeper than II, since for identical densities 
the pressure under conditions of frozen vibrational degrees of freedom is higher than in 
the state of full equilibrium, since the compression energy is distributed over a smaller 
number of degrees of freedom. 

Thus, relaxation processes in a shock wave occur as follows according to the shock 
adiabat. Initially the system transforms jumpwise from state A to state B. In Fig. 2 
this process is localized at the front of the shock wave I. Then the system evolves slowly 
from state B to state C along the segment BC. This process is localized in region II. 

Consider now how the propagation of shock waves occurs in a nonequilibrium vibration- 
ally excited gas. This problem becomes relevant in connection with the study of flow of a 
nonequlibrium gas in nozzles (gas-dynamic lasers), where the formation of shock waves is pos- 
sible. Similar problems are also encountered during interactions of shock waves with a non- 
equilibrium atmosphere and with a gas discharge region. 

Let a shock wave propagate through a nonequilibrium gas, with a velocity such that the 
translational temperature directly behind the front of the shock wave is lower than the vi- 
brational temperature ahead of the front. This is illustrated schematically in Fig. 3. In 
the relaxation zone II there we have primarily vibrational-translational energy exchange 
processes, but they now lead to a different result. Under the conditions corresponding to 
Fig. i there occurs heating of the vibrational degrees of freedom and cooling of the transla- 
tional ones. Under the conditions of Fig. 3 the process occurs in the opposite direction - 
the vibrational degrees of freedom are cooled, and the translational ones are heated. At 
first glance this seems a curious but nonessential difference. In reality the inversion in 
temperatures leads to principal differences. 

In the problem corresponding to Fig. i the parameter distribution behind the shock 
wave is completely determined by the shock wave velocity or by the Mach number. For exam- 
ple, for an ideal gas the temperatures in region I (T I) and in region II (T 2) are related 
by [32] 

T~ = [2yM~ - -  (y - -  l)] [ ( y - -  1) M~ + 2] ( 3 6 )  
7"1 (v + I) 2 M~ ' 

where, as usual, the Mach number M is equal to the ratio of the shock wave velocity v I to 
the local sound velocity in the unperturbed gas. 

Under the conditions corresponding to Fig. 3 the situation changes drastically. The 
temperature T 2 now depends not only on the number MI, but also on the initial conditions. 
Thus, the shock wave, entering the nonequilibrium gas, varies (under certain conditions) 
its velocity until all parameters start matching. As shown below, this is possible only 
for velocities exceeding or being equal to some minimum value, determined by the initial 
temperature distribution and by the nature of the gas. 

Indeed, the conservation equations in the form (32) remain valid even in the case cor- 
responding to Fig. 3. The single difference is that in the specific enthalpy in region I 

hi : 5kB T1/(2m) -~- ~1 -~ P/9, ( 3 7 )  

The mean vibrational energy per unit mass is no longer equal to the equilibrium value de- 
termined by the temperature T I. In the simplest case nonequilibrium recording of vibration- 
al energy ahead of the front of the shock wave can be characterized by the vibrational tem- 
perature Tvl. In this case 
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el= m exp kB7, ),1 l'i-l] . (38) 

For Tvl 
of shock waves in a primarily equilibrium gas. 

The solution of system (32) with account of (37) leads to the relation [33, 34]: 

__P~ _ 7N~--I + 7(M~---I) {(1--9'6N~tn(~1 -~2))1/2_.1}. 

Here P2 and e 2 refer 
for sound velocities 

= T 1 the problem reduces to the preceding one, i.e., to the problem of propagation 

It is seen from 

(39) 

to the edge of the relaxation zone, and the Mach number was calculated 
with frozen oscillations. 

relation (39) that stationary shock waves exist for 

(M~-- 1 ) z- 9,6m (81 -- e~) 
7kB T1 (40) 

Under usual conditions, i.e., for shock wave propagation in an equilibrium gas, e 2 > el 
(see Fig. i), therefore inequality (41) is satisfied for any M~. On the other hand, for 
shock waves in a vibrationally excited gas under the condition E 2 < el (see Fig. 3) there 
exists a minimum Mach number, whose value is determined by the initial conditions and by 
the gas properties. For example, for }IF with the initial conditions T l = 300 K, Tvl = 2000 
K, pl = 5 the minimum number is M I = 1.8. At the same initial translational temperature 
and pressure at Tvl = 3000 K the minimum number M l equals 2.6. The occurrence of a minimum 
Mach number can be interpreted on the basis of detonation representations. 

Consider the process of variation of gas parameters in a shock wave, propagating in a 
primarily nonequilibrium gas on a pV-diagram (Fig. 4). Curve I in the figure corresponds 
to the Hugoniot adiabat for a gas with frozen vibrational degrees of freedom. The point 
piVl corresponds to the initial conditions. The adiabat I describes the state of the gas 
directly behind the front of the shock wave at the origin of the relaxation zone. One may 
construct the shock adiabat for the equilibrium state of the gas at the end of the relaxation 
zone. It is primarily described by Eq. (33) with the only difference that h I is determined 
by relation (37) with the nonequilibrium value el, and h 2 - by the equilibrium value e=. 
The last fact is significant, since h 2 does not transform to h I at P2 = Pl, V2 = Vl; there- 
fore the equilibrium adiabat (curve II) occurs above the frozen one. The point of adiabat 
intersection corresponds to the P2 and V 2 values, for which the e2 equilibrium value equals 
e I. The transition from the state plV1 to the state p2V2, located above the adiabat inter- 
section point, occurs as in the equilibrium case. Initially, at the shock front the gas 
transforms with a jump from state i to state 2' on the frozen adiabat, then in the relaxa- 
tion zone the gas is further preheated, and its pressure is enhanced. Another situation 
arises if the final state 3 is located below the adiabat intersection point. As in the pre- 
ceding case, the gas transforms jumpwise into state 3, on the frozen adibat. Then, in the 
relaxation zone, the gas reaches state 3, while the parameter variation on the path 3'-3 is 
opposite to that observed during the transition 2'-2; more precisely, in the relaxation zone 
on the path 3'-3 the translational temperature increases, while the pressure and density 
drop. The minimum Mach number for which stationary propagation of shock waves is possible 
is determined by the slope of the tangent to the equilibrium adiabat, traced from point i. 

The detonation regime of shock wave propagation in a nonequilibrium gas is generated 
by the same physical reasons as for detonation in a reactinggas. The similarity between 
nonequilibrium chemically reacting and vibrationally excited gas was noted in [34]. The 
structural problem of stationary shock waves, propagating in a gas with vibrational and 
dissipative equilibrium, was first solved in [31, 32, 35, 36], and the conditions of genera- 
ting the detonation regime were formulated. Numerical estimates were also carried out in 
[32, 33] for the structure of shock waves in the regime of recompressed detonation. The 
numerical calculation of the relaxation zone in this regime was carried out in [37]. It 
must be noted, however, that at the present time there exists no rigorous solution of the 
problem of shock wave evolution in a nonequilibrium gas. There also exist no direct ex- 
periments on studying the behavior of shock waves in a vibrationally excited gas. The 
latter fact is, obviously, of timely nature, since this region is reached by experimental 
studies. 
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The nonstationary problem of shock wave propagation in a nonequilibrium gas was investi- 
gated in [38, 39]. Unlike usual detonation in a chemically reacting gas with an Arrhenius 
rate constant the vibrational relaxation time depends on temperature according to a differ- 
ent law. For anharmonic molecules, in particular, this dependence can be opposite that of 
Arrhenius or Landau-Teller. An increase of the vibrational relaxation time with temperature 
leads, as shown in [38, 39], to the appearance of a quasistationary regime of shock wave 
propagation, preceding the transition to spontaneous detonation. Numerical estimates for 
nitrogen were carried out in [38, 39]. In this connection we note that due to the slow 
dependence of vibrational relaxation process in nitrogen the emergence time at the station- 
ary regime at not too high temperatures is of the order of 1 [38]. Therefore, this is not 
very convenient for experimental studies of the detonation region of shock wave propagation. 

Conclusion. Nonlinear acoustics as a self-contained branch of physical hydrodynamics 
was formulated fairly recently. This happened approximately 25-30 years ago. A still 
younger area of nonlinear acoustics deals with wave propagation problems in nonequilibrium 
media. It has increased substantially in recent years. As seen from this review, only 
first steps have been taken so far. The main result in this region at the present stage of 
development consists of clarifying the role of the nonequilibrium factor, playing as impor- 
tant a role as nonlinear and dissipative effects. 

Hydrodynamics of nonequilibrium media as a generalization of nonlinear acoustics has 
made only first steps. At the present time it is difficult to estimate not only possible 
results, but even the field of activity. Nonlinear acoustics, as well as all of physical 
gas dynamics, was generated at the junction of various sciences. Therefore, its successes 
and range of interests are determined by successes and interests of adjacent sciences. To- 
day the development of laser physics has initiated the problem of studying acoustic pertur- 
bations in actual media. Other problems will be generated tomorrow. In this connection 
it is difficult to enumerate even the basic problems requiring solution. Nevertheless, 
several of them already stand out. Among these problems are the study of physicochemical 
processes in intense acoustic waves, including also laser generation, the interaction of 
acoustic and shock waves with shock waves with the inclusion of nonequilibrium regions both 
behind and ahead shock waves, self-focusing of acoustic waves in nonequilibrium media, etc. 

At the present time it is difficult and sometimes simply impossible to estimate the 
scientific and practical importance of some effect or another in nonlinear acoustics. At 
the same time it is already quite clear now that nonlinear acoustics of nonequilibrium 
state, as well as all of physical gas dynamics, is of explicit practical importance. From 
the very start they were formulated on the basis of solving practical problems, and this 
intimate connection with practice and technology has been conserved so far. 

NOTATION 

I, pumping intensity in vibrational degrees of freedom per unit mass; Q, intensity of 
heat removal from translational degrees of freedom per unit mass; p, gas density; p, pres- 
sure; ~, mean vibrational energy per unit mass; c, heat capacity of translational-rotational 
degrees of freedom in molecular calculations at constant volume in units of the Boltzmann 
constant; ~, adiabatic index; Ceq, equilibrium value of r T, vibrational relaxation time; 
T, translational temperature; kB, Boltzmann constant; k, wave vector; m, frequency; <, heat- 
transfer coefficient; m, molecular mass; Cv, heat capacity of vibrational degrees of freedom 
at temperature T in molecular calculations in units of the Boltzmann constant; Tv, vibration- 
al temperature; g, second viscosity coefficient; cs, sound velocity; E, total energy per 
unit mass; s, entropy per unit mass; Tsou, dlaracteristic relaxation time of sources; 
o, entropy production; ~, thermal conductivity; Cpm and Cvm, heat capacities at constant 
pressure and volume per unit mass; n, shear viscosity coefficient; T,, mean free path time; 
and L, characteristic perturbation length. 
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